Part Details for MAX30 by Maxim Integrated Products
Overview of MAX30 by Maxim Integrated Products
- Distributor Offerings: (0 listings)
- Number of FFF Equivalents: (0 replacements)
- CAD Models: (Request Part)
- Number of Functional Equivalents: (0 options)
- Part Data Attributes: (Not Available)
- Reference Designs: (Available)
Tip: Data for a part may vary between manufacturers. You can filter for manufacturers on the top of the page next to the part image and part number.
Part Details for MAX30
MAX30 CAD Models
Resources and Additional Insights for MAX30
Reference Designs related to MAX30
-
MAXREFDES100#: Health Sensor Platform
Features<p>Skin temperature<p>Heart rate<p>Biopotential measurement (ECG)<p>Motion<p>Rotation<p>Barometric pressure
-
MAXREFDES1043: How to Monitor SpO2 Levels Using the MAX30102
The MAXREFDES1043 is designed for SpO2 measurements based on Maxim’s new-generation biosensor—the MAX30102. The MAXREFDES1043 is a high-accuracy, low-power, small-size, and easily implemented design that can monitor SpO2 levels using red and IR LEDs. The MAX30102 is an integrated pulse oximetry and heart-rate monitor module. It includes internal LEDs, photodetectors, optical elements, and low-noise electronics with ambient light rejection. The MAX30102 provides a complete system solution to ease the design-in process for mobile and wearable devices. It operates on a single 1.8V power supply and a separate 3.3V power supply for the internal LEDs. Communication is through a standard I2C-compatible interface. The module can be shut down through software with zero standby current, allowing the power rails to remain powered at all time.<p>Key Features<p>Integrated solution<p>Small size<p>Low power<p>High accuracy
-
MAXREFDES117#: Heart-Rate and Pulse-Oximetry Monitor
Features<p>Optical Heart-Rate Monitor and Pulse Oximetry Solution<p>Tiny 12.7mm x 12.7mm (0.5in x 0.5in) Board Size<p>Low Power<p>Device Drivers<p>Free Algorithm<p>Example C Source Code For Arduino And mbed Platforms<p>Test Data
-
MAXREFDES220#: Finger Heart Rate and Pulse Oximeter Smart Sensor with Digital Signal Processing
The MAXREFDES220# reference design provides everything you need to quickly prototype your product to measure finger-based heart rate, blood oxygen saturation level (SpO2), and blood pressure trending (BPT).<p>The MAX30101 and the MAX32664 provide an integrated hardware and software solution for multiple finger-based applications. The MAX32664 firmware provides algorithm output.<p>A MAX32630FTHR is provided to emulate a host system for easy development.<p>Design files, firmware, and software can be found on the Design Resources tab. The board is also available for purchase.<p>Features<p>MAX30101 Heart Rate Monitor and Pulse Oximeter Tiny, 5.6mm × 3.3mm × 1.55mm 14-Pin Optical Module<p>Integrated Cover Glass for Optimal, Robust Performance<p>Ultra-Low Power Operation for Mobile Devices (<1mW)<p>Programmable Sample Rate and LED Current for Power Savings<p>High SNR (Signal-to-Noise) Ratio, >80dB (typ)<p>MAX32664 Sensor Hub Maxim-Licensed Firmware for Complete Algorithmic Support of: 1) Finger Heart-Rate and Blood Oxygen Saturation Calculations or 2) BPT, Heart-Rate, and Blood Oxygen Saturation Calculations<p>Industry-Standard I2C Interface for Communication with Host Controller<p>Dedicated Bootloader Authenticates Secure Firmware Updates<p>3-Axis AccelerometerProvides Greater Accuracy<p>Compensates for Motion Artifacts
-
MAXREFDES1044: Heart-Rate Monitor Using the MAX30101
The MAXREFDES1044 is a reference design for the MAX30101 and several other Maxim® products that demonstrates how a small size, low cost, low power, high accuracy heart-rate monitor can be easily implemented. This design can monitor heart rate using red, infrared (IR), or green LEDs.<p>The MAX30101 is an integrated pulse oximetry and heartrate monitor module. It includes internal LEDs, photodetectors, optical elements, and low-noise electronics with ambient light rejection. Other Maxim components used in this design include two MAX8892 (a high PSRR, low-dropout, 150mA linear regulator) to supply 1.8V and 3.3V for the rest of the design and a MAX1555 single-cell lithium-ion (Li+) battery charger to charge a Li+ battery. Two MAX40200 (an ideal diode current-switch) are also included to allow either the battery or VBUS from the USB port to supply power. The MAX40200 ideal diode has a forward voltage drop that is an order of magnitude better than a Schottkey diode. The MAX6864 (a nanopower μP supervisory circuit with manual reset and a watchdog timer) is used to monitor the 3.3V supply voltage and reset the microcontroller if it drops below 3.1V. The design also contains an FTDI FT234 USB-to-serial UART interface and a STMicroelectronics® STM32L432KC low-power microcontroller.
-
MAXREFDES101#: Health Sensor Platform 2.0
The MAXREFDES101# is a unique evaluation and development platform in a wrist-worn wearable form factor that demonstrates the functions of a wide range of Maxim’s products for health-sensing applications. This second-generation health sensor platform (a follow-on to the MAXREFDES100#) integrates a PPG analog-front-end (AFE) sensor (MAX86141), a biopotential AFE (MAX30001), a human body temperature sensor (MAX30205), a microcontroller (MAX32630), a power-management IC (MAX20303), and a 6-axis accelerometer/gyroscope. The complete platform includes a watch enclosure and a biometric sensor hub with an embedded heart-rate algorithm (MAX32664). Algorithm output and raw data can be streamed through Bluetooth® to an Android® app or PC GUI for demonstration, evaluation, and customized development.<p>Design files, firmware, and software can be found under the Design Resources tab. The board is also available for purchase.<p>Features<p>Photoplethysmography (PPG)<p>Biopotential measurement (ECG)<p>Skin temperature<p>Embedded heart-rate algorithm<p>Motion and rotation<p>Wearable watch form factor<p>Applications<p>Wearable sports watch<p>Healthcare tracker<p>On-demand ECG monitor<p>Heart signal data tracker<p>Health Sensor Platform portal is available with FAQ support ›<p>var videoItem5837098991001 = { id:'5837098991001', title:'Introducing the Health Sensor Platform 2.0 (MAXREFDES101)', duration:'2:45', contributor:'', desc:'<p>Meet the Health Sensor Platform 2.0, a rapid prototyping, evaluation, and development solution for wearable applications that saves up to six months of product development time. The open platform makes it possible to monitor electrocardiogram (ECG), heart rate, and body temperature using a wrist-worn wearable device.<\\/p>\\n\\n<a href=\\"\\/products\\/MAXREFDES101\\">Learn more: MAXREFDES101 \\u203A<\\/a>', thumbnail:'/content/dam/images/design/videos/vid-introducing-the-health-sensor-platform-2.0-maxrefdes101.png', date:1537462920000, tags:'maxim_web:en\\/design\\/videos, maxim_web:languages\\/english, maxim_web:en\\/markets\\/healthcare\\/wearable-health, maxim_web:en\\/products\\/sensors\\/biopotential-sensors, maxim_web:en\\/design\\/technical-training', keywords:'health sensor platform, hSensor platform, heart rate, optical heart rate sensor, human body temperature, biopotential measurement, ECG, fitness devices, clinical devices, wearable devices', datasheet:'', }; $(document).ready( function() { $("#video-thumb5837098991001").load(function() { if(navigator.userAgent.match('CriOS') || (navigator.userAgent.match('Android') && navigator.userAgent.match('Chrome'))) $("#play-icon5837098991001").hide(); else { var iconWidth=$("#video-thumb5837098991001").width()*120/333; $("#play-icon5837098991001").css("top", ($("#video-thumb5837098991001").height()-iconWidth)/2+"px").css("left",($("#video-thumb5837098991001").width()-iconWidth*4/5)/2+"px"); $("#play-icon5837098991001").css("width",iconWidth+"px").css("height",iconWidth+"px"); $("#play-icon5837098991001").show(); } }).each(function() { if(this.complete) $(this).load(); }); $(window).bind("resize",function(){ if(navigator.userAgent.match('CriOS') || (navigator.userAgent.match('Android') && navigator.userAgent.match('Chrome'))) $("#play-icon5837098991001").hide(); else { var iconWidth=$("#video-thumb5837098991001").width()*120/333; $("#play-icon5837098991001").css("top", ($("#video-thumb5837098991001").height()-iconWidth)/2+"px").css("left",($("#video-thumb5837098991001").width()-iconWidth*4/5)/2+"px"); $("#play-icon5837098991001").css("width",iconWidth+"px").css("height",iconWidth+"px"); $("#play-icon5837098991001").show(); } }); setTimeout(function (){ var mdIns = document.URL.indexOf("/vd_"); if(mdIns>0) { var mdStr = document.URL.substring(mdIns+4); if(mdStr.indexOf("/")>0) { mdStr = mdStr.substring(0, mdStr.indexOf("/")); } if(mdStr.indexOf("#")>0) { mdStr = mdStr.substring(0, mdStr.indexOf("#")); } if(videoItem5837098991001.id==mdStr) { $('#tab0 .accordion-header').collapse("show"); $('#tab0 .panel-collapse').collapse("show"); var lang = getUrlLanguage(); popupvideo(videoItem5837098991001, lang); } } }, 200); } ); #play-icon5837098991001{ width:60px; height:60px; margin:0 !important; position: absolute; z-index: 2; top: 50px; left: 100px; }<p>Introducing the Health Sensor Platform 2.0 (MAXREFDES101)<p>2:45 September 20, 2018<p>var videoItem6057983398001 = { id:'6057983398001', title:'How to Update the Firmware on the MAXREFDES101 Health Sensor Platform 2.0', duration:'1:57', contributor:'5344', desc:'Sankalp explains how to easily update the firmware on the MAXREFDES101 Health Sensor Platform 2.0 to quickly start programming the onboard electrocardiogram (ECG), photoplethysmography (PPG), and human body temperature sensors.<br><br><a href=\\"\\/products\\/MAXREFDES101\\">Learn more: MAXREFDES101 \\u203A<\\/a>', thumbnail:'/content/dam/images/design/videos/how-to-update-the-firmware-on-the-maxrefdes101-health-sensor-platform.png', date:1565635560000, tags:'maxim_web:en\\/design\\/videos, maxim_web:languages\\/english, maxim_web:en\\/markets\\/healthcare\\/wearable-health, maxim_web:en\\/products\\/sensors\\/biopotential-sensors', keywords:'MAXREFDES101, ECG sensor, PPG sensor, body temperature sensor, health sensor platform', datasheet:'', }; $(document).ready( function() { $("#video-thumb6057983398001").load(function() { if(navigator.userAgent.match('CriOS') || (navigator.userAgent.match('Android') && navigator.userAgent.match('Chrome'))) $("#play-icon6057983398001").hide(); else { var iconWidth=$("#video-thumb6057983398001").width()*120/333; $("#play-icon6057983398001").css("top", ($("#video-thumb6057983398001").height()-iconWidth)/2+"px").css("left",($("#video-thumb6057983398001").width()-iconWidth*4/5)/2+"px"); $("#play-icon6057983398001").css("width",iconWidth+"px").css("height",iconWidth+"px"); $("#play-icon6057983398001").show(); } }).each(function() { if(this.complete) $(this).load(); }); $(window).bind("resize",function(){ if(navigator.userAgent.match('CriOS') || (navigator.userAgent.match('Android') && navigator.userAgent.match('Chrome'))) $("#play-icon6057983398001").hide(); else { var iconWidth=$("#video-thumb6057983398001").width()*120/333; $("#play-icon6057983398001").css("top", ($("#video-thumb6057983398001").height()-iconWidth)/2+"px").css("left",($("#video-thumb6057983398001").width()-iconWidth*4/5)/2+"px"); $("#play-icon6057983398001").css("width",iconWidth+"px").css("height",iconWidth+"px"); $("#play-icon6057983398001").show(); } }); setTimeout(function (){ var mdIns = document.URL.indexOf("/vd_"); if(mdIns>0) { var mdStr = document.URL.substring(mdIns+4); if(mdStr.indexOf("/")>0) { mdStr = mdStr.substring(0, mdStr.indexOf("/")); } if(mdStr.indexOf("#")>0) { mdStr = mdStr.substring(0, mdStr.indexOf("#")); } if(videoItem6057983398001.id==mdStr) { $('#tab0 .accordion-header').collapse("show"); $('#tab0 .panel-collapse').collapse("show"); var lang = getUrlLanguage(); popupvideo(videoItem6057983398001, lang); } } }, 200); } ); #play-icon6057983398001{ width:60px; height:60px; margin:0 !important; position: absolute; z-index: 2; top: 50px; left: 100px; }<p>How to Update the Firmware on the MAXREFDES101 Health Sensor Platform 2.0<p>1:57 August 12, 2019
-
Designing Robust and Fault-Tolerant Motion-Control Feedback Systems
This article reviews basic servo systems and development of the fault-tolerant feedback systems for servo systems. Controller receiver circuit design, proper PC-board receiver circuit layout, and the encoder's signal cable and termination are discussed. Additionally, various types of industrial feedback encoders are presented, along with the various types of faults that can develop in a servo feedback system.
1 - 5 of 7 reference designs