Part Details for MAX20 by Texas Instruments
Results Overview of MAX20 by Texas Instruments
- Distributor Offerings: (0 listings)
- Number of FFF Equivalents: (0 replacements)
- CAD Models: (Request Part)
- Number of Functional Equivalents: (0 options)
- Part Data Attributes: (Not Available)
- Reference Designs: (Available)
Tip: Data for a part may vary between manufacturers. You can filter for manufacturers on the top of the page next to the part image and part number.
MAX20 Information
MAX20 by Texas Instruments is an Electric Fuse.
Electric Fuses are under the broader part category of Circuit Protection Components.
Circuit protection components monitor and safeguard electronic systems from overcurrent, overvoltage, and other electrical hazards. Read more about Circuit Protection Components on our Circuit Protection part category page.
Available Datasheets
Part # | Manufacturer | Description | Datasheet |
---|---|---|---|
CO-058SMAX200-002 | Amphenol Cables on Demand | Amphenol CO-058SMAX200-002 SMA Male to SMA Male (RG58) 50 Ohm Coaxial Cable Assembly 2ft | |
CO-174RASMAX2-005 | Amphenol Cables on Demand | Amphenol CO-174RASMAX2-005 SMA Right Angle Male to SMA Right Angle Male (RG174) 50 Ohm Coaxial Cable Assembly 5ft | |
CO-174SMAX200-007 | Amphenol Cables on Demand | Amphenol CO-174SMAX200-007 SMA Male to SMA Male (RG174) 50 Ohm Coaxial Cable Assembly 7ft |
Part Details for MAX20
MAX20 CAD Models
Resources and Additional Insights for MAX20
Reference Designs related to MAX20
-
MAXREFDES103#: Wrist-Based SpO2, HR, and HRV Health Sensor Platform
The MAXREFDES103# is a wrist-worn wearable form factor that demonstrates the high sensitivity and algorithm processing functions for health-sensing applications. This health sensor band platform includes an enclosure and a biometric sensor hub with an embedded algorithm for heart rate and SpO2 (MAX32664C) which processes PPG signals from the analog-front-end (AFE) sensor (MAX86141). Algorithm output and raw data can be streamed through Bluetooth® to an Android® app or PC GUI for demonstration, evaluation, and customized development.<p>Design files, firmware, and software can be found on the Design Resources tab. The board is also available for purchase.<p>Features<p>Photoplethysmography (PPG)<p>Wrist-based embedded heart rate, blood oxygen saturation (SpO2) algorithm<p>Heart rate variability (HRV), respiration rate, sleep quality library algorithm<p>Wearable health band form factor<p>MAX32664 sensor hub<p>MAX86141 PPG analog front-end<p>3-axis accelerometer<p>Windows® and Android GUIs<p>Applications<p>Wearable sports watch<p>Healthcare tracker<p>Heart signal data tracker
-
MAXREFDES101#: Health Sensor Platform 2.0
The MAXREFDES101# is a unique evaluation and development platform in a wrist-worn wearable form factor that demonstrates the functions of a wide range of Maxim’s products for health-sensing applications. This second-generation health sensor platform (a follow-on to the MAXREFDES100#) integrates a PPG analog-front-end (AFE) sensor (MAX86141), a biopotential AFE (MAX30001), a human body temperature sensor (MAX30205), a microcontroller (MAX32630), a power-management IC (MAX20303), and a 6-axis accelerometer/gyroscope. The complete platform includes a watch enclosure and a biometric sensor hub with an embedded heart-rate algorithm (MAX32664). Algorithm output and raw data can be streamed through Bluetooth® to an Android® app or PC GUI for demonstration, evaluation, and customized development.<p>Design files, firmware, and software can be found under the Design Resources tab. The board is also available for purchase.<p>Features<p>Photoplethysmography (PPG)<p>Biopotential measurement (ECG)<p>Skin temperature<p>Embedded heart-rate algorithm<p>Motion and rotation<p>Wearable watch form factor<p>Applications<p>Wearable sports watch<p>Healthcare tracker<p>On-demand ECG monitor<p>Heart signal data tracker<p>Health Sensor Platform portal is available with FAQ support ›<p>var videoItem5837098991001 = { id:'5837098991001', title:'Introducing the Health Sensor Platform 2.0 (MAXREFDES101)', duration:'2:45', contributor:'', desc:'<p>Meet the Health Sensor Platform 2.0, a rapid prototyping, evaluation, and development solution for wearable applications that saves up to six months of product development time. The open platform makes it possible to monitor electrocardiogram (ECG), heart rate, and body temperature using a wrist-worn wearable device.<\\/p>\\n\\n<a href=\\"\\/products\\/MAXREFDES101\\">Learn more: MAXREFDES101 \\u203A<\\/a>', thumbnail:'/content/dam/images/design/videos/vid-introducing-the-health-sensor-platform-2.0-maxrefdes101.png', date:1537462920000, tags:'maxim_web:en\\/design\\/videos, maxim_web:languages\\/english, maxim_web:en\\/markets\\/healthcare\\/wearable-health, maxim_web:en\\/products\\/sensors\\/biopotential-sensors, maxim_web:en\\/design\\/technical-training', keywords:'health sensor platform, hSensor platform, heart rate, optical heart rate sensor, human body temperature, biopotential measurement, ECG, fitness devices, clinical devices, wearable devices', datasheet:'', }; $(document).ready( function() { $("#video-thumb5837098991001").load(function() { if(navigator.userAgent.match('CriOS') || (navigator.userAgent.match('Android') && navigator.userAgent.match('Chrome'))) $("#play-icon5837098991001").hide(); else { var iconWidth=$("#video-thumb5837098991001").width()*120/333; $("#play-icon5837098991001").css("top", ($("#video-thumb5837098991001").height()-iconWidth)/2+"px").css("left",($("#video-thumb5837098991001").width()-iconWidth*4/5)/2+"px"); $("#play-icon5837098991001").css("width",iconWidth+"px").css("height",iconWidth+"px"); $("#play-icon5837098991001").show(); } }).each(function() { if(this.complete) $(this).load(); }); $(window).bind("resize",function(){ if(navigator.userAgent.match('CriOS') || (navigator.userAgent.match('Android') && navigator.userAgent.match('Chrome'))) $("#play-icon5837098991001").hide(); else { var iconWidth=$("#video-thumb5837098991001").width()*120/333; $("#play-icon5837098991001").css("top", ($("#video-thumb5837098991001").height()-iconWidth)/2+"px").css("left",($("#video-thumb5837098991001").width()-iconWidth*4/5)/2+"px"); $("#play-icon5837098991001").css("width",iconWidth+"px").css("height",iconWidth+"px"); $("#play-icon5837098991001").show(); } }); setTimeout(function (){ var mdIns = document.URL.indexOf("/vd_"); if(mdIns>0) { var mdStr = document.URL.substring(mdIns+4); if(mdStr.indexOf("/")>0) { mdStr = mdStr.substring(0, mdStr.indexOf("/")); } if(mdStr.indexOf("#")>0) { mdStr = mdStr.substring(0, mdStr.indexOf("#")); } if(videoItem5837098991001.id==mdStr) { $('#tab0 .accordion-header').collapse("show"); $('#tab0 .panel-collapse').collapse("show"); var lang = getUrlLanguage(); popupvideo(videoItem5837098991001, lang); } } }, 200); } ); #play-icon5837098991001{ width:60px; height:60px; margin:0 !important; position: absolute; z-index: 2; top: 50px; left: 100px; }<p>Introducing the Health Sensor Platform 2.0 (MAXREFDES101)<p>2:45 September 20, 2018<p>var videoItem6057983398001 = { id:'6057983398001', title:'How to Update the Firmware on the MAXREFDES101 Health Sensor Platform 2.0', duration:'1:57', contributor:'5344', desc:'Sankalp explains how to easily update the firmware on the MAXREFDES101 Health Sensor Platform 2.0 to quickly start programming the onboard electrocardiogram (ECG), photoplethysmography (PPG), and human body temperature sensors.<br><br><a href=\\"\\/products\\/MAXREFDES101\\">Learn more: MAXREFDES101 \\u203A<\\/a>', thumbnail:'/content/dam/images/design/videos/how-to-update-the-firmware-on-the-maxrefdes101-health-sensor-platform.png', date:1565635560000, tags:'maxim_web:en\\/design\\/videos, maxim_web:languages\\/english, maxim_web:en\\/markets\\/healthcare\\/wearable-health, maxim_web:en\\/products\\/sensors\\/biopotential-sensors', keywords:'MAXREFDES101, ECG sensor, PPG sensor, body temperature sensor, health sensor platform', datasheet:'', }; $(document).ready( function() { $("#video-thumb6057983398001").load(function() { if(navigator.userAgent.match('CriOS') || (navigator.userAgent.match('Android') && navigator.userAgent.match('Chrome'))) $("#play-icon6057983398001").hide(); else { var iconWidth=$("#video-thumb6057983398001").width()*120/333; $("#play-icon6057983398001").css("top", ($("#video-thumb6057983398001").height()-iconWidth)/2+"px").css("left",($("#video-thumb6057983398001").width()-iconWidth*4/5)/2+"px"); $("#play-icon6057983398001").css("width",iconWidth+"px").css("height",iconWidth+"px"); $("#play-icon6057983398001").show(); } }).each(function() { if(this.complete) $(this).load(); }); $(window).bind("resize",function(){ if(navigator.userAgent.match('CriOS') || (navigator.userAgent.match('Android') && navigator.userAgent.match('Chrome'))) $("#play-icon6057983398001").hide(); else { var iconWidth=$("#video-thumb6057983398001").width()*120/333; $("#play-icon6057983398001").css("top", ($("#video-thumb6057983398001").height()-iconWidth)/2+"px").css("left",($("#video-thumb6057983398001").width()-iconWidth*4/5)/2+"px"); $("#play-icon6057983398001").css("width",iconWidth+"px").css("height",iconWidth+"px"); $("#play-icon6057983398001").show(); } }); setTimeout(function (){ var mdIns = document.URL.indexOf("/vd_"); if(mdIns>0) { var mdStr = document.URL.substring(mdIns+4); if(mdStr.indexOf("/")>0) { mdStr = mdStr.substring(0, mdStr.indexOf("/")); } if(mdStr.indexOf("#")>0) { mdStr = mdStr.substring(0, mdStr.indexOf("#")); } if(videoItem6057983398001.id==mdStr) { $('#tab0 .accordion-header').collapse("show"); $('#tab0 .panel-collapse').collapse("show"); var lang = getUrlLanguage(); popupvideo(videoItem6057983398001, lang); } } }, 200); } ); #play-icon6057983398001{ width:60px; height:60px; margin:0 !important; position: absolute; z-index: 2; top: 50px; left: 100px; }<p>How to Update the Firmware on the MAXREFDES101 Health Sensor Platform 2.0<p>1:57 August 12, 2019
-
MAXREFDES175#: Remote Phantom Supply BeagleBone Black Cape
Overview<p>Today’s cars are equipped with many remote units used for radio and global positioning antennas and remote cameras and microphones. Quite often those remote units are supplied by the head unit through cables that require a regulated and protected power supply source. The MAXREFDES175# reference design shows how to implement eight phantom power supplies and how to take advantage of the numerous diagnostic features offered by the MAX20084 using the BeagleBone® Black platform.<p>Design files, firmware, and software can be found on the Design Resources tab. The board is also available for purchase.
-
MAXREFDES300#: RFID Datalogger for Healthcare and Cold-Chain Logistics
Features<p>Maxim’s MAX32660 MicrocontrollerUltra-Low-Power Operation<p>256KB Flash Memory and 96KB SRAM<p>3.05mm (L) x 3.05mm (W) x 0.80mm (H) TQFN Package<p>Axzon’s RFM405 Wireless Passive SensorOn-Chip Temperature Sensor<p>UHF/RAIN Operation – EPCglobal® Gen2 Compliant<p>Maxim’s MAX20310 PMICSingle-Inductor Multiple-Output (SIMO), Ultra-Low-IQ, Buck-Boost Regulator<p>Programmable-Temperature Thresholds
-
MAXREFDES1126: 0.72V/20A Supply for Xilinx Ultrascale+ FPGAs
The MAXREDES1126 provides the internal core voltage (VCCINT) for Xilinx Ultrascale+ FPGAs. This reference design targets FPGAs with a -2L speed grade that require 0.72V for VCCINT from a 12V intermediary bus. The converter supports a maximum load of 20A at a 400kHz switching frequency. The MAXREFDES1126 is centered around the MAX20743 step-down regulator, which is configured for standalone operation. However, the PMBus™ interface allows for monitoring and control of various converter parameters. All circuitry for the PMBus interface is provided and the MAXPOWERTOOL002# can be used to communicate with the MAXREFDES1126.<p>The MAXREFDES1126 uses the MAX20743 synchronous step-down regulator. The internal FETs and control loop compensation allow for a compact design with minimal external resources. Additionally, the differential sense lines allow for accurate sensing of the CPU core voltage when located remotely from the MAX20743 IC. The loop gain is selectable to allow design flexibility between stability and output capacitance. A programmable soft-start limits inrush currents during startup. The MAX20743 also offers protections such as input UVLO, output overvoltage/ undervoltage alerts, output overvoltage protection, over-temperature, and current limiting. Moreover, the PMBus interface allows additional parameters to be monitored such as input voltage, output voltage, output current, and temperature. For a full list of PMBus commands, see application note 6042, “PMBus Protocols for Controlling and Monitoring the MAX20743/MAX20730 Switching Regulators”<p>Key Features<p>PMBus Interface<p>Soft-Start<p>ProtectionsOutput under/over-voltage alert<p>Current limit and short-circuit protection<p>Over-temperature protection
-
MAXREFDES1131: 0.72V/12A Supply for Xilinx Ultrascale+ FPGAs
The MAXREFDES1131 provides the internal core voltage (VCCINT) for Xilinx Ultrascale+ FPGAs. This reference design targets FPGAs with a -2L speed grade that require 0.72V for VCCINT from a 12V intermediary bus. The converter supports a maximum load of 12A at a 400kHz switching frequency. The MAXREFDES1131 is centered around the MAX20730 step-down regulator, which is configured for standalone operation. However, the PMBus™ interface allows for monitoring and control of various converter parameters. All circuitry for the PMBus interface is provided and the MAXPOWERTOOL002# can be used to communicate with the MAXREFDES1131.<p>The MAXREFDES1131 uses the MAX20730 synchronous step-down regulator. The internal MOSFETs and control loop compensation allow for a compact design with minimal external resources. Additionally, the differential sense lines allow for accurate sensing of the CPU core voltage when located remotely from the MAX20730 IC. The loop gain is selectable to allow design flexibility between stability and output capacitance. A programmable soft-start limits inrush currents during startup. The MAX20730 also offers protections such as input UVLO, output overvoltage/ undervoltage alerts, output overvoltage protection, overtemperature, and current limiting. Moreover, the PMBus interface allows additional parameters to be monitored such as input voltage, output voltage, output current, and temperature. For a full list of PMBus commands, see Application Note 6042.<p>Key Features<p>PMBus Interface<p>Soft-Start<p>Protections<p>Output Undervoltage/Overvoltage Alert<p>Current Limit and Short-Circuit Protection<p>Overtemperature Protection